If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+6t-5=0
a = 2; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·2·(-5)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{19}}{2*2}=\frac{-6-2\sqrt{19}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{19}}{2*2}=\frac{-6+2\sqrt{19}}{4} $
| 125^2x+3=625 | | u-(-17)=36 | | 13x=17.75 | | 6h^2+12h+6=0 | | 2(8+1)-3n=9 | | -7u+15.6=4.4 | | 9x-123=360 | | 4x^2+3-7x=0 | | (2x+120)/2=4x | | 5/6×36/1=x | | 4x+3=1/2x+10 | | 3x+8x=17.75 | | 2x+120/2=4x | | -(x-16)=3x | | .5x^2+4x-160=0 | | 100=1-11n/2 | | X^2+x-112=180 | | 3n/10=3= | | 3/4(4x+16)+2x=7 | | X^2+x-212=180 | | 7+5x=39 | | 4x+3=1/2×+10 | | -4(x+10)–6=-3(x–2) | | 1/3(6+4d)-3d=-10 | | 21-5x-(3x-1)=5x-12 | | 4x^2-11=53 | | 5x+(8/x)+12=0 | | -3+4x=18 | | 71-1x=-11+131 | | 40x=-12x | | 8y-2y=-10 | | s/2+s/4+s/8=s-1800 |